Speech recognition techniques for a sign language recognition system
نویسندگان
چکیده
One of the most significant differences between automatic sign language recognition (ASLR) and automatic speech recognition (ASR) is due to the computer vision problems, whereas the corresponding problems in speech signal processing have been solved due to intensive research in the last 30 years. We present our approach where we start from a large vocabulary speech recognition system to profit from the insights that have been obtained in ASR research. The system developed is able to recognize sentences of continuous sign language independent of the speaker. The features used are obtained from standard video cameras without any special data acquisition devices. In particular, we focus on feature and model combination techniques applied in ASR, and the usage of pronunciation and language models (LM) in sign language. These techniques can be used for all kind of sign language recognition systems, and for many video analysis problems where the temporal context is important, e.g. for action or gesture recognition. On a publicly available benchmark database consisting of 201 sentences and 3 signers, we can achieve a 17% WER.
منابع مشابه
Designing and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods
For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpoken Language Processing Techniques for Sign Language Recognition and Translation
We present an approach to automatically recognize sign language and translate it into a spoken language. A system to address these tasks is created based on state-ofthe-art techniques from statistical machine translation, speech recognition, and image processing research. Such a system is necessary for communication between deaf and hearing people. The communication is otherwise nearly impossib...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کامل